Abstract

Recently, the first microstructure-preserving approach to metal joining of physical vapor-deposited nanolaminates was introduced. In a subsequent study, this metal lap joint is exposed to annealing cycles with target temperatures of 100°C, 200°C, 400°C and 800°C. The thinning-out ends (wedges) of the laminate and overlapping laminate of the lap joint provide challenges as well as new insights into thermal stability of nanolaminate. Energy dispersive x-ray spectroscopy mapping in the Scanning Transmission Electron Microscope (STEM) of the joint cross section proves that melting of the Cu-layers initiates at the tip of the wedges, where the laminate interface is as susceptible to melting as the lamina interface. A Melting Point Depression curve for the Cu/Nb nanolayered metal joint is established. The article further introduces the protective effect of covering laminate as the Shielding Effect and discusses the counteracting phenomena Melting Point Depression and Shielding Effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.