Abstract
By means of surface mechanical attrition treatment (SMAT), a nanocrystalline surface layer is produced in Fe-30 wt pct Ni alloy, accompanying the formation of the strain-induced martensite. The thermal stability of nanocrystalline martensite and parent phase austenite in Fe-30 wt pct Ni alloy is studied by X-ray diffraction (XRD) and transmission electron microscope (TEM). The grain growth kinetics parameters, time exponent, n, and activation energy, Q, for both martensite and austenite, are determined, respectively. The TEM observations indicate that abnormal grain growth occurs during annealing at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.