Abstract

Ionic liquids (ILs) are emerging as a new family of environmentally benign solvents alternative to the conventional solvents for most catalytic reactions due to their nonvolatility. In such applications, thermal stability and solubility are vital for the selection of a suitable IL solvent for a particular reaction. In this work, the thermal stability of three commonly used imidazolium ILs (bmim[BF4], bmim[PF6], bmim[Tf2N]) was studied with both nonisothermal and isothermal thermogravimetric analysis (TGA). The decomposition kinetics indicated the relative anion stability for imidazolium based ILs was Tf2N > PF6 > BF4. In addition, the solubility data of three organic compounds (methanol, ethyl acetate, and benzene) in ILs were specified by the binary vapor–liquid equilibrium (VLE) at elevated temperatures. The results indicated bmim[Tf2N] was the best solvent for the organics investigated. For the same IL, the solute with a higher polarity tends to possess a lower activity coefficient. The activity coeffi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.