Abstract

The thermo-stability and unfolding behaviors of a small hyperthermophilic protein Sso7d as well as its single-point mutation F31A are studied by molecular dynamics simulation at temperatures of 300 K, 371 K and 500 K. Simulations at 300 K show that the F31A mutant displays a much larger flexibility than the wild type, which implies that the mutation obviously decreases the protein's stability. In the simulations at 371 K, although larger fluctuations were observed, both of these two maintain their stable conformations. High temperature simulations at 500 K suggest that the unfolding of these two proteins evolves along different pathways. For the wild-type protein, the C-terminal alpha-helix is melted at the early unfolding stage, whereas it is destroyed much later in the unfolding process of the F31A mutant. The results also show that the mutant unfolds much faster than its parent protein. The deeply buried aromatic cluster in the F31A mutant dissociates quickly relative to the wild-type protein at high temperature. Besides, it is found that the triple-stranded antiparallel β-sheet in the wild-type protein plays an important role in maintaining the stability of the entire structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.