Abstract

AbstractGrowth conditions for epitaxy of Si1-x-yGexCx and Si1-xCx alloy layers on (100) silicon substrates by rapid thermal chemical vapor deposition (RTCVD) with disilane as the silicon source gas are described and the Si1-xCx conditions are compared to previously reported RTCVD growth conditions for epitaxy of Si1-xCx using silane as the source gas. The thermal stability of the layers at 850°C in nitrogen is examined using x-ray diffraction as a measure of the average substitutional carbon concentration in the layers after annealing. A characteristic time constant to describe the reduction of average substitutional carbon concentration in the layer is extracted from the XRD measurements. The characteristic time constants are found to agree within a factor of 3 with that observed in previous reports. However, the time constants are found to depend more strongly on the as-grown substitutional carbon concentration than what is predicted by simple precipitation kinetics, assuming carbon diffusion to a constant number of nucleation centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.