Abstract

ABSTRACT Nano boron oxide (B2O3) was firstly produced from granular B2O3 by ball milling under cryogenic conditions. Then, PMMA/B2O3 nanocomposites were synthesized by melting method and then characterized. Finally, the rheological properties of PMMA/B2O3 nanocomposite were investigated using a high pressure capillary rheometer. Brauner-Emmet-Teller (BET) surface area analysis showed that the surface area of B2O3 increased with cryogenic grinding. Transmission electron microscopy (TEM) images revealed that B2O3 particles were nano-sized. Scanning electron microscopy (SEM) images showed that the morphology changed with the increase of B2O3 amount. The thermal stability of nanocomposites was found to be better than PMMA. PMMA degraded in two steps, while nanocomposites degraded in one step. It was determined that the amount of residue increased with increasing amount of B2O3. Both PMMA and nanocomposites exhibited non-Newtonian shear thinning flow behavior. In addition, rheological data were found to be highly compatible with the Power Law model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.