Abstract
The thermal stability and the reducibility of oxygen-containing functional groups on the surface of nitric acid-treated multiwalled carbon nanotubes (CNTs) have been studied using temperature-programmed desorption and reduction (TPD and TPR) and high-resolution X-ray photoelectron spectroscopy (XPS). The thermal treatments up to 720 °C were carried out in the XPS setup, either under ultrahigh vacuum (UHV) or in diluted hydrogen. Deconvoluted XP spectra were used for the quantitative determination of the amount of the different functional groups on the CNT surfaces as a function of the pretreatment. The number of the oxygen atoms per unit surface area was obtained from the oxygen to carbon (O/C) ratio derived from the corresponding peak areas in the XP spectra. The results obtained by XPS agree quantitatively with the observations by TPD and TPR. The acid treatment not only introduced carboxyl, carbonyl, and phenol groups on the surface but also generated ether-type oxygen groups between the graphitic laye...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.