Abstract

The thermal stability of nanostructured Fe100−x−y Ni x Zr y alloys with Zr additions up to 4 at.% was investigated. This expands upon our previous results for Fe–Ni base alloys that were limited to 1 at.% Zr addition. Emphasis was placed on understanding the effects of composition and microstructural evolution on grain growth and mechanical properties after annealing at temperatures near and above the bcc-to-fcc transformation. Results reveal that microstructural stability can be lost due to the bcc-to-fcc transformation (occurring at 700 °C) by the sudden appearance of abnormally grown fcc grains. However, it was determined that grain growth can be suppressed kinetically at higher temperatures for high Zr content alloys due to the precipitation of intermetallic compounds. Eventually, at higher temperatures and regardless of composition, the retention of nanocrystallinity was lost, leaving behind fine micron grains filled with nanoscale intermetallic precipitates. Despite the increase in grain size, the in situ formed precipitates were found to induce an Orowan hardening effect rivaling that predicted by Hall–Petch hardening for the smallest grain sizes. The transition from grain size strengthening to precipitation strengthening is reported for these alloys. The large grain size and high precipitation hardening result in a material that exhibits high strength and significant plastic straining capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.