Abstract

BackgroundHepatitis C virus (HCV) is a blood-borne flavivirus that infects many millions of people worldwide. Relatively little is known, however, concerning the stability of HCV and reliable procedures for inactivating this virus.MethodsIn the current study, the thermostability of cell culture-derived HCV (HCVcc, JFH-1 strain) under different environmental temperatures (37°C, room temperature, and 4°C) and the ability of heat, UVC light irradiation, and aldehyde and detergent treatments to inactivate HCVcc were evaluated. The infectious titers of treated viral samples were determined by focus-forming unit (FFU) assay using an indirect immunofluorescence assay for HCV NS3 in hepatoma Huh7-25-CD81 cells highly permissive for HCVcc infection. MTT cytotoxicity assay was performed to determine the concentrations of aldehydes or detergents at which they were no longer cytotoxic.ResultsHCVcc in culture medium was found to survive 37°C and room temperature (RT, 25 ± 2°C) for 2 and 16 days, respectively, while the virus was relatively stable at 4°C without drastic loss of infectivity for at least 6 weeks. HCVcc in culture medium was sensitive to heat and could be inactivated in 8 and 4 min when incubated at 60°C and 65°C, respectively. However, at 56°C, 40 min were required to eliminate HCVcc infectivity. Addition of normal human serum to HCVcc did not significantly alter viral stability at RT or its susceptibility to heat. UVC light irradiation (wavelength = 253.7 nm) with an intensity of 450 μW/cm2 efficiently inactivated HCVcc within 2 min. Exposures to formaldehyde, glutaraldehyde, ionic or nonionic detergents all destroyed HCVcc infectivity effectively, regardless of whether the treatments were conducted in the presence of cell culture medium or human serum.ConclusionsThe results provide quantitative evidence for the potential use of a variety of approaches for inactivating HCV. The ability of HCVcc to survive ambient temperatures warrants precautions in handling and disposing of objects and materials that may have been contaminated with HCV.

Highlights

  • Hepatitis C virus (HCV) is a blood-borne flavivirus that infects many millions of people worldwide

  • The HCVcc stock (2.5 × 104 focus-forming unit (FFU)/ml in culture medium) lost its infectivity after incubation at 37°C for 48 h, when the FFU assay became negative and no residual infectivity was found upon three successive passages of the inoculated Huh7-25-CD81 cultures (Figure 1A)

  • Lindenbach et al reported that the infectivity of J6/JFH1 HCVcc did not change after three freeze-thaw cycles [10]

Read more

Summary

Introduction

Hepatitis C virus (HCV) is a blood-borne flavivirus that infects many millions of people worldwide. Injection of illicit drugs represents a major risk, while other routes of infection, including occupational exposure (such as needle stick), sex, and mother-to-infant transmission (with the exception of HIV-coinfected mother), seem infrequent [3] It was shown recently in the chimpanzee model that HCV in infectious plasma could survive drying and environmental exposure to room temperature for at least 16 h. Several related viruses in the family Flaviviridae that can be readily cultured in vitro, e.g., bovine viral diarrhoea virus (BVDV, genus Pestivirus), have been used as surrogates for HCV to study the inactivation process [7,8]. These model viruses show similarity in virion and genome structure to HCV, more relevant systems are still needed to assess the reliable procedures for inactivating HCV

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.