Abstract

Despite significant advances in manufacturing atomically precise gold nanoclusters protected by various ligands, there is a limited understanding of the thermal stability dynamics and electronic properties of ligand effects. We conducted ab initio molecular dynamics (AIMD) simulations on the well-characterized [Au13(NHCMe)9Cl3]2+ nanocluster and its counterpart [Au13(PMe3)9Cl3]2+ cluster to evaluate the thermal stability induced by N-heterocyclic carbene (NHC) and phosphine ligands. The result shows that under vacuum conditions, [Au13(PMe3)9Cl3]2+ is more stable than [Au13(NHCMe)9Cl3]2+, and both lead to metal nucleation decomposition, breaking into the Au12 fragment and L-Au-Cl (L = NHCMe or PMe3) complexes eventually. The optical and electronic properties of these two clusters change significantly due to ligand alteration. Furthermore, we have designed a novel [Au13(NHCMe)(PMe3)8Cl3]2+ cluster coprotected by NHC and phosphine ligands, displaying higher thermal stability than the homoligand protected [Au13(NHCMe)9Cl3]2+ and [Au13(PMe3)9Cl3]2+. Our hypothetical species are an interesting model for nanostructured materials, facilitating the experimental exploration of cluster synthesis and catalytic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call