Abstract

The thermal stability and crystallization mechanism of the Zr59.3Cu28.8Al10.4Nb1.5 (at%) metallic glass produced through selective laser melting SLM (from industrial grade material) was studied and compared with the same alloy produced by suction casting (from laboratory grade material of high purity). Oxygen- and Al-rich particles of a cubic phase (Fd3‾m) with a size of up to 200 nm are detected in the as-built selective laser melted samples by transmission electron microscopy.The crystallization process of the cast and SLM samples is investigated by in-situ X-ray diffraction experiments. In the cast samples, the initial crystallization occurs via the formation of a metastable tetragonal phase (Al2Zr3), together with tetragonal CuZr2 and hexagonal Al3Zr4 type structures, while the SLM samples initially crystallize through the formation of the metastable, oxygen- and Al-rich, cubic phase already present before annealing. The main phases present at the end of the crystallization for both type of samples are the same, mainly CuZr2 and Al3Zr4. The differences in the crystallization paths are attributed to differences in the oxygen levels. In general, the higher oxygen content (∼1 at%) of the SLM samples results in a decrease of the thermal stability of the alloy and promotes the formation of an oxygen-rich, metastable cubic phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.