Abstract

Solid catalysts with ionic liquid layers (SCILLs) are heterogeneous catalysts which benefit significantly in terms of selectivity from a thin coating of an ionic liquid (IL). In the present work, we study the interaction of CO with a Pd model SCILL consisting of a 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide ([C4C1Pyr][NTf2]) film deposited on Pd(111). We investigate the CO permeability and stability of the IL film via pressure modulation experiments by infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum (UHV) and at ambient pressure conditions by time-resolved, temperature-programmed, and polarization-modulated (PM) IRAS experiments. In addition, we performed molecular dynamics (MD) simulations to identify adsorption motifs, their abundance, and the influence of CO. We find a strongly bound IL wetting monolayer (ML) and a potentially dewetting multilayer. Molecular reorientation of the IL at the interface and multilayer dewetting allow for the accumulation of CO at the metal/IL interface. Our results confirm that co-adsorption of CO changes the molecular structure of the IL wetting layer which confirms the importance to study model SCILL systems under in situ conditions.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.