Abstract
The thermal spin torque induced by the spin-dependent Seebeck effect in double-barrier tunnel junctions is derived considering free-electron and tight-binding calculations. We show that in systems comprising ferromagnetic electrodes and nonmagnetic barriers, the in-plane component of the thermal spin torque is the dominant term, whereas in junctions comprising nonmagnetic electrodes and ferromagnetic barriers, both components, the in-plane and the out-of-plane, are comparable in magnitude. Moreover, larger torque amplitudes up to 3 orders of magnitude are obtained in the second system as a result of the spin-filtering effect; consequently, double-barrier tunnel junctions in the presence of magnetic insulators offer an enhanced thermal spin-torque mechanism for reliable applications. We propose taking advantage of quantum resonant tunneling through resonance states below the Fermi level in these structures that can pave a route toward achieving larger spin-torque efficiencies, even when considering smaller values of the exchange splitting. Furthermore, we identify the parameters needed to tune efficiently these resonant states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.