Abstract

Nanocomposites of polyethylene oxide (PEO) and polyvinylidene fluoride (PVDF) without and with low content of single and multiwalled carbon nanotubes (SWCNTs-MWCNTs) were prepared and studied by thermogravimetric analysis (TGA) using different heating rate. TGA results indicate that the thermal stability of neat PEO/PVDF blend was improved with both heating rate and incorporation of carbon nanotubes (CNTs). The degradation temperature for neat blend was lower than those of the nanocomposites after adding both SWCNTs and MWCNTs. As increase of heating rate, the onset of decomposition is irregularly moved to higher temperatures. This indicates that the thermal stability of the polymeric matrices has been improved after addition of CNTs. The residual weight of the samples left increased steadily with adding of both SWCNTs and MWCNTs. Kinetic thermodynamic parameters such as activation energy, enthalpy, entropy, and Gibbs free energy are evaluated from TGA data using Coats-Redfern model. The values of all parameters irregularly decrease with increasing of heating rate due to increasing of heating rate temperature, the random scission of macromolecule chain in the polymeric matrices predominates and the activation energy has a lower value.

Highlights

  • Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima [1], they have been looked at by a wide range of researchers [2, 3]

  • The first step is attributed to Polyethylene oxide (PEO) decomposition and the other step is attributed to polyvinylidene fluoride (PVDF) decomposition

  • The other decomposition regions in thermogravimetric analysis (TGA) curves which cover a wider temperature range including the decomposition of PVDF have a percentage of weight loss from 33 to 70%

Read more

Summary

Introduction

Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima [1], they have been looked at by a wide range of researchers [2, 3]. One of advantages of CNTs is a reinforcement filler to induce a better adhesion with polymeric matrix, which is an important factor to enhancement of the nanocomposite properties [7] The properties of these nanocomposites depend on several factors with the addition of CNTs to the polymer like synthetic and purification process, amount and type of CNTs impurities, diameter, length, and ratio of nanotube in the composites [8, 9]. This work reports the synthesis and investigation of PEO/PVDF nanocomposite films doped with low content of single and multiwalled carbon nanotubes using a simple method and studies the effect of different heating rate and kinetic parameters to achieve a dramatic enhancement in thermal properties

Experimental and Theoretical Details
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.