Abstract

The effect of temperature on the dynamic yield strength and ultimate tensile strength of high-purity and commercial-purity titanium and an α+β alloy Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si upon submicrosecond-scale shock-wave loading was studied. An anomalous increase in the dynamic yield strength with temperature was detected in high-purity titanium, whereas the behavior of commercial-purity titanium and the titanium alloy was similar to that under regular conditions. It was found that the dynamic ultimate tensile strength is less sensitive to the composition and structure of the alloy and to the test temperature than is the yield strength. Our experiments corroborate the occurrence of polymorphic transformation during shock compression of high-purity titanium, but the transformation pressure and its temperature dependence are inconsistent with the data available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.