Abstract

Various methods of thermal shock testing are used by aircraft and industrial gas turbine engine (IGT) manufacturers to characterize new thermal barrier coating systems in the development stage as well as for quality control. The cyclic furnace oxidation test (FCT), widely used in aircraft applications, stresses the ceramic/bondcoat interface, predominantly through thermally grown oxide (TGO) growth stress. The jet engine thermal shock (JETS) test, derived from a burner rig test, creates a large thermal gradient across the thermal barrier coating (TBC), as well as thermomechanical stress at the interface. For IGT applications with long high-temperature exposure times, a combination of isothermal preoxidation and thermal shock testing in a fluidized bed reactor may better represent the actual engine conditions while both types of stress are present. A comparative evaluation of FCT, JETS, and a combined isothermal oxidation and fluidized bed thermal shock test has been conducted for selected ceramic/bondcoat systems. The results and the failure mechanisms as they relate to the TBC system are discussed. A recommendation on the test method of choice providing best discrimination between the thermal shock resistance of the ceramic layer, the ceramic/bondcoat interface, and even substrate related effects, is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.