Abstract

FeMnCrAl/Cr3C2 and FeMnCrAl/Cr3C2–Ni9Al coatings were deposited onto low-carbon steel substrates by high velocity arc spraying. The cross-section and interface microstructures of the coatings were analyzed by optical microscopy (OM). The thermal shock resistance of the coatings was investigated. The characteristics of the coatings after the thermal cycling test were studied by OM, field emission scanning electron microscopy, and energy dispersion spectrometry. The results show that laminated structures with pores, oxide phases, and unmelted particles were found on all the prepared coatings. The FeMnCrAl/Cr3C2 coating with a Ni9Al interlayer registered the best thermal shock resistance, which may be attributed to the interdiffusion between the low-carbon steel substrates and the Ni9Al arc-sprayed coating that converted the mechanical bond between the substrates and the coatings to a metallurgical one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call