Abstract
This paper studies the thermal shock fracture of a cracked cylinder based on the hyperbolic heat conduction. The crack faces are subjected to a sudden anti-symmetric thermal flux and a sudden symmetric thermal flux, respectively. By Laplace transform and dual integral equation technique, the mode II stress intensity factor and the mode I stress intensity factor are developed at the crack front for the two cases, respectively. Numerical results of stress intensity factor for selected thermal relaxation time and crack size are shown graphically. It is found that the stress intensity factor is considerably enhanced for large thermal relaxation time (which is a material constant) or small crack radius. In addition, the stress intensity factor at the crack front increases with the thermal relaxation time. For the case of anti-symmetric thermal flux, the mode II stress intensity factor increases rapidly with crack size. Whereas for the case of symmetric thermal flux, with increasing crack size, the mode I stress intensity factor increases slowly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.