Abstract

To develop materials suitable for aerospace applications, silicon nitride/boron nitride (Si3N4/BN) fibrous monolithic ceramics with varying BN contents were prepared. Employing analytical techniques such as XRD and SEM, coupled with mechanical testing equipment, the influence of BN concentration on the thermal shock resistance of Si3N4/BN fibrous monolithic ceramics was assessed. When the thermal shock differential is less than 800 °C, its residual flexural strength gradually decreases as the thermal shock differential increases. Conversely, when the differential exceeds 1000 °C, the residual flexural strength of the material increases. The residual strength of all samples reached its peak after undergoing a thermal shock assessment at a 1500 °C differential. When the BN mass fraction is 5 wt.%, the residual strength after a thermal shock at a temperature difference of 1500 °C is 387 ± 19 MPa, which is 124% higher than the original strength of the sample that did not undergo thermal shock (25 °C, 311 ± 18 MPa). The oxide layer formed on the thermal shock surface played a role in bridging defects introduced during material surface processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.