Abstract

High ductile-to-brittle transition temperature, recrystallization-induced embrittlement, and neutron-irradiation-induced embrittlement are potential drawbacks related to the mechanical properties of tungsten (W) for plasma facing materials of fusion reactor divertors. To improve the mechanical properties, resistance to recrystallization and neutron irradiation, W materials modified by potassium doping and alloying by rhenium have been developed. In this paper, thermal shock behaviors of these W materials under high heat flux tests were investigated, which simulated an edge localized mode of plasma occurring in fusion reactors as a transient event. The thermal shock tests were performed with an electron beam facility, JUDITH 1, and post-mortem analyses to evaluate the damage caused by the thermal shock tests were carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.