Abstract

In a fusion reactor, plasma-facing components (PFCs) will suffer severe thermal shock; behavior and performance of PFCs under high heat flux (HHF) loads are of major importance for the long-term stable operation of the reactor. This work investigates the thermo-mechanical behaviors of tungsten armor under high heat loads by the method of finite element modeling and simulating. The temperature distribution and corresponding thermal stress changing rule under different HHF are analyzed and deduced. The Manson–Coffin equation is employed to evaluate the fatigue lifetime (cyclic times of HHF loading) of W-armored first wall under cyclic HHF load. The results are useful for the formulation design and structural optimization of tungsten-armored PFCs for the future demonstration fusion reactor and China fusion experimental thermal reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call