Abstract

Abstract In addition to its direct impact on soil physical and chemical soil properties, fire produces a sudden change in plant cover. The post-fire impact of falling raindrops on unprotected soil surfaces is a major cause of detachment of aggregates, physical degradation and erosion of soils. The aim of this work was to analyse the effects of burning intensity and rain under factor-controlled conditions using unaltered soil samples. Assessed variables were soil organic carbon, aggregate stability and water repellency (0–1 cm mineral soil), as well as soil surface compaction and hydraulic conductivity. Unaltered topsoil cores were obtained in a mature Mediterranean gorse shrubland. We applied two successive treatments: burning (unburned, low and high burning levels) and rain (77 mm/h). The soil properties studied were scarcely affected by burning. However, soils showed high vulnerability to raindrop impact: a) aggregate stability and organic carbon were not significantly affected by burning; b) low intensity burning increased the frequency of samples with moderate water repellency, whereas unburned together with high burning showed more cases of low and extreme water repellency; c) the rain treatment produced a significant decrease in hydraulic conductivity although this response was independent of burning level; d) the highest reduction in hydraulic conductivity was observed in the samples with highest values prior to the rain treatment, and this was related to the highest organic carbon contents, and e) the reduction in hydraulic conductivity could be explained by the development of a thin and friable surface crust, although the cone penetrometer was not sensitive enough to detect this observed phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.