Abstract

Transient stress field and thermo-elastic stress wave propagation are studied in functionally graded thick hollow cylinder under arbitrary thermo-mechanical shock loading, in this article. Thermo-mechanical properties of functionally graded (FG) cylinder are assumed to be temperature independent and vary continuously and smoothly in the radial direction. The governing dynamic equations are analytically solved in temperature and elastic fields. To solve the problem, Laplace transform is used respect to time in all constitutive equations and boundary conditions. At first, temperature field equation analytically solved using Laplace transform and series method. The dynamic behaviors of thermo-elastic stresses are illustrated and discussed for various grading patterns of thermo-mechanical properties in several points across the thickness of FG cylinder. Time history of temperature field and thermal stresses are obtained using the residual theorem and the fast Laplace inverse transform method (FLIT), respectively. Also, the effects of the cylinder thickness and convection heat transfer coefficient on dynamic response of FG cylinder are revealed and discussed. The presented analytical method provides a ground to study the time histories of radial and hoop stresses in FG cylinders with different thickness and various volume fraction exponents. The advantage of this method is its mathematical ability to support simple and complicated mathematical function for the thermo-mechanical boundary conditions. A reasonable agreement can be seen in comparison of obtained results based on the presented analytical method with published data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.