Abstract

Abstract We show that a confined viscous liquid emits a dynamic thermal response upon applying a low frequency (∼1 Hz) shear excitation. Hot and cold thermal waves are observed in situ at atmospheric pressure and room temperature, in a viscous liquid (polypropylene glycol) at various thicknesses ranging from 100 µm up to 340 µm, upon applying a mechanical oscillatory shear strain. The observed thermal effects, synchronous with the mechanical excitation, are inconsistent with a viscous behaviour. It indicates that mesoscopic liquids are able to (partly) convert mechanical shear energy in non-equilibrium thermodynamic states. This effect called thermo-elasticity is well known in solid materials. The observation of a thermal coupling to the mechanical shear deformation reinforces the assumption of elastically correlated liquid molecules. The amplitude of the thermo-elastic waves increases linearly by increasing the shear strain amplitude up to a transition to a non-linear thermal behavior, similar to a transition from an elastic to plastic regime. The thermo-elastic effects do not give rise to any change in stress measurements and thus the dynamic thermal analysis provides unique information about dynamic liquid properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call