Abstract
IntroductionOpioid withdrawal syndrome is a critical component of opioid abuse and consists of a wide array of symptoms including increases in pain sensitivity (hyperalgesia). A reliable preclinical model of hyperalgesia during opioid withdrawal is needed to evaluate possible interventions to alleviate withdrawal. The following study describes a method for assessing increases in thermal sensitivity on the hotplate in a mouse model of spontaneous morphine withdrawal. MethodsC57BL/6J mice received 5.5days of 30, 56, or 100mg/kg morphine or saline (s.c., twice daily). In Experiment I, thermal sensitivity data were collected at baseline and at 8, 24, 32, 48h and 1week following the final injection. Thermal sensitivity was assessed by examining latency to respond on a hotplate across a range of temperatures (50, 52, 54, and 56°C). In Experiment II, 0.01mg/kg buprenorphine was administered 30min prior to each testing session during the withdrawal period. In Experiment III, jumping during a 30min period was assessed at baseline and at 0, 8, 24, 32, and 48h following the final morphine injection. ResultsDuring the withdrawal period, thermal sensitivity increased significantly in all morphine-treated mice as compared to saline-treated mice. Thermal sensitivity was greater in mice treated with 56mg/kg morphine compared to 30mg/kg and peaked earlier than in mice treated with 100mg/kg (32h v 1wk). The increase in thermal sensitivity following 56mg/kg morphine was attenuated by a dose of buprenorphine that did not produce antinociception alone (i.e., 0.01mg/kg). In general, the results of the jumping experiment paralleled those obtained in Experiment I. DiscussionResponse latency on the hotplate is a reliable and sensitive measure of spontaneous morphine withdrawal in mice, making it an ideal behavior for assessing the potential of medications and environmental interventions to alleviate opioid withdrawal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacological and Toxicological Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.