Abstract

Supramolecular coordination complexes (SCCs) are popular for their structural diversity and functional adaptability, which make them suitable for a wide range of applications. Photophysical and mechanical performance of SCCs are the most attractive characteristics, yet their ionically conductive behavior and potential in electrical sensing have been rarely investigated. This study reports a well-designed SCC that integrates orthogonal metal coordination and host-guest interactions to achieve sensitive electrical thermal sensing. Owing to the thermodynamic nature of the host-guest interaction, the SCC encounters thermally induced disassembly, leading to significantly enhanced ion mobility and thus allowing for the precise detection of minor temperature variation. The SCC-based thermometer is then fabricated with the assistance of 3D printing and demonstrates good accuracy and reliability in monitoring human skin temperature and real-time temperature changes of mouse during the whole anesthesia and recovery process. Our findings provide an innovative strategy for developing electrical thermometers and expand the current application scope of SCCs in electrical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.