Abstract

An experimental methodology is presented to measure the temperature variation in cells with the usage of CdTe/CdS/ZnS core/shell/shell quantum dots as nanothermometers. The photoluminescence spectral shifts from the endocytosed quantum dots were measured and analyzed to show heat generation in the human umbilical vein endothelial cell following Ca2+ stress. Cytotoxicity evaluation has demonstrated the CdTe/CdS/ZnS QDs are biocompatible to cells. The measured data show that the thermal sensibility of the core/shell/shell nanocrystals has been calibrated and has a linear correlation of 0.16 nm °C-1 along with temperature variation. The photoluminescence spectral shift of QD uptake in the cell indicates a thermogenesis of 3.125 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.