Abstract

Many fire accidents of electric vehicles were reported that happened during the charging process. In order to investigate the reasons that lead to this problem, this paper studies the thermal safety of Li-ion batteries under limited overcharge abuse. A 3D electrochemical-thermal coupled model is developed for modeling thermal and electrochemical characteristics from normal charge to early overcharge state. This model is validated by experiment at charge rates of 0.5C, 1C, and 2C. The simulation results indicate that irreversible heat contributes most to temperature rise during the normal charge process, but the heat induced by Mn dissolution and Li deposition gradually dominates heat generation in the early overcharge period. Based on this, a threshold selection method for multistage warning of batteries overcharge is proposed. Among them, level 1 should be considered as a critical stage during the early overcharge process due to the deposited lithium starts to react with electrolyte at the end of level 1, where temperature rate increases to 0.5°C min−1 for 1C charge. While the thresholds of levels depend on charge rate and composition of battery. Furthermore, several critical parameters are analyzed to figure out their effects on thermal safety. It is found that the temperature at the end of overcharge is significantly influenced by the change of positive electrode thickness and solid electrolyte interface (SEI) film resistance. The final temperature increases by 17.5°C and 7.9°C, respectively, with positive electrode thickness ranging from 50 to 80 μm and SEI film resistance increasing from 0.002 to 0.03 Ω.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.