Abstract

Abstract The Mini-Plate 2 (MP-2) irradiation test is a fueled experiment designed for irradiation in multiple test locations in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The experiment is a drop-in test where small aluminum-clad fuel plate samples (mini plates) are cooled directly by the ATR Primary Coolant System (PCS) water. The MP-2 fuel plate experiment will be irradiated in several different irradiation locations of the ATR. This fueled experiment contains aluminum-clad fuel mini plates consisting of monolithic U-Mo. Four different types of fuel plates with fuel meat thickness and cladding are part of the MP-2 test. A thermal analysis has been performed on the MP-2 experiment. A method for calculating Departure from Nucleate Boiling Ratio (DNBR) and Flow Instability Ratio (FIR) during a reactivity transient using the commercial finite element and heat transfer code ABAQUS is discussed. At the start of an ATR cycle the heat generation rate of the fueled experiment is high and the heat rate multiplier from the outer shim control cylinders is low, while the reverse is true at the end of the ATR cycle. Thermal analyses at 10-day increments during the cycle calculate the DNBR and FIR during a reactivity transient. This technique calculates DNBR for the fuel plate surfaces and FIR for all water components for each finite element surface and node at various times during the ATR cycle. Heat rates vary with time during the transient calculations that are provided by a detailed physics analysis. Oxide growth on the fuel plates is also incorporated. Results from the transient calculations are displayed with the ABAQUS post processor. By calculating these parameters at each location in the finite element model, conservatism is replaced with accuracy. This allows for a greater margin for the thermal hydraulic safety parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call