Abstract

Chip manufacturers provide the Thermal Design Power (TDP) for a specific chip. The cooling solution is designed to dissipate this power level. But because TDP is not necessarily the maximum power that can be applied, chips are operated with Dynamic Thermal Management (DTM) techniques. To avoid excessive triggers of DTM, usually, system designers also use TDP as power constraint. However, using a single and constant value as power constraint, e.g., TDP, can result in significant performance losses in homogeneous and heterogeneous manycore systems. Having better power budgeting techniques is a major step towards dealing with the dark silicon problem. This paper presents a new power budget concept, called Thermal Safe Power (TSP), which is an abstraction that provides safe power and power density constraints as a function of the number of simultaneously active cores. Executing cores at any power consumption below TSP ensures that DTM is not triggered. TSP can be computed offline for the worst cases, or online for a particular mapping of cores. TSP can also serve as a fundamental tool for guiding task partitioning and core mapping decisions, specially when core heterogeneity or timing guarantees are involved. Moreover, TSP results in dark silicon estimations which are less pessimistic than estimations using constant power budgets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.