Abstract

Mining vehicle manufacturers are developing lithium-ion (Li-ion) battery electric vehicles as an alternative to diesel-powered vehicles. In gassy underground mines, explosion-proof (XP) enclosures are commonly used to enclose electrical ignition sources to prevent propagation of an internal methane (CH4) air explosion to a surrounding explosive atmosphere. Li-ion batteries can create pressurized explosions within sealed enclosures due to thermal runaway (TR). Researchers at the National Institute for Occupational Safety and Health (NIOSH) measured TR pressures of lithium iron phosphate (LFP) cells as a function of free space within sealed enclosures and observed an inverse power relationship. A well-confined cell produced 294 bar (4260 psia) of pressure during a TR, far exceeding minimum pressure containment specifications for conventional XP enclosures. Results indicate that adding enough free space surrounding LFP cells can reduce TR pressures to levels below that expected for CH4-air ignitions. Measured TR temperatures were below the minimum autoignition temperature of CH4-air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.