Abstract

When refluxing with sodium hydrogen carbonate in acetonitrile, 7-chloro-5-(4-fluorophenyl)-1,3-dihydro-2,3,4-benzothiadiazepine 2,2-dioxide afforded, after loss of dinitrogen and subsequent ring contraction, the corresponding sulfone in 83% yield. Similar treatment of the related thiadiazolo-fused tricycles, i.e. 9-aryl-5H,7H-[1,2,5]thiadiazolo[3,4-h][2,3,4]benzothiadiazepine 6,6-dioxides, resulted in a substantially different product mixture: formation of sultines and benzocyclobutenes was observed, while only small amounts of the sulfones were formed, if any. Density functional theory calculations support the mechanism proposed for the transformations involving a zwitterionic intermediate formed by the tautomerization of the thiadiazepine ring followed by dinitrogen extrusion. When starting from 7-chloro-substituted 2,3,4-benzothiadiazepine 2,2-dioxide, the formation of sulfone via o-quinodimethane is the preferred pathway from the zwitterion. However, in the case of thiadiazolobenzothiadiazepine 6,6-dioxides it has been found that the ring closure of the zwitterion leading to the formation of sultines was kinetically preferred over the loss of sulfur dioxide leading to o-quinodimethane, which is the key intermediate to benzocyclobutene-type products. The calculations explain the differences observed between the product distributions of the chloro-substituted and the thiadiazolo-fused derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call