Abstract

Phosphonium-based ionic liquids with varying counteranions from commercially available ionic liquid precursors enabled tunable viscosity, ionic conductivity, and thermal stability. Thermogravimetric analysis revealed a relationship between thermal stability and anion composition where anions with lower basicity remained stable to higher temperatures. Determination of glass transition temperatures and melting temperatures using differential scanning calorimetry revealed supercooling, crystallization, and dependence on anion composition. Rheological and ionic conductivity measurements determined the temperature-dependence of the viscosity and ionic conductivity of the phosphonium-based ionic liquids. Arrhenius analyses of conductivity and viscosity provided activation energies, which showed a decrease toward larger, more delocalized anions. An assessment according to the Walden plot displayed their efficacy relative to other ionic liquids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.