Abstract
There are thousands of lakes in the Tibetan Plateau (TP), and most are saline. However, little is known about the responses of TP lakes to climate change, especially saline ones. We investigated the thermal responses of the largest freshwater lake (Ngoring Lake) in the TP and its nearby small saline lake (Hajiang Salt Pond) to climate change using the improved lake scheme in the Community Land model (CLM4-LISSS), in which we primarily developed the salinity parameterizations previously evaluated in the Great Salt Lake in USA and further considered the effect of salinity on the temperature of the maximum density of saline water in the present study. The improved lake model with salinity parameterizations was first applied to a saline lake in the TP, where saline lakes make up the majority of water bodies. The CLM4-LISSS model could effectively simulate lake surface water temperature (LSWT), lake water temperature (LT) and ice thickness in Ngoring Lake. Additionally, the model including our salinity parameterizations significantly improved simulations of LSWT and LT in Hajiang Salt Pond, especially in winter. The LSWT of the two completely opposite lakes were warming in the simulations at a rate above 0.6 °C/decade. Meteorological forces were the main driving factor, with increasing downward longwave radiation, air temperature and air humidity, as well as weakening winds contributing to LSWT increase. Compared to a hypothetical shallow freshwater lake, the greater depth of Ngoring Lake made its surface warm faster, and salinity slightly accelerated the warming of Hajiang Salt Pond. Monthly mean LSWT differences between the two lakes were induced by salinity effects in cold periods and lake depth in the unfrozen period. In response to a warming climate, the LSWT in the ice-free Hajiang Salt Pond rapidly increased from January to April due to the warming climate, whereas the LSWT of Ngoring Lake increased faster in the first and last month of the ice-cover period due to later ice-on and earlier ice-off. This study will provide a useful tool for saline lakes in the TP and help deepen our knowledge about the responses of TP lakes, especially the saline lakes, to climate change, as well as response differences between freshwater and saline lakes and the reasons for these differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.