Abstract

AbstractA data-driven model reduction strategy is presented for the representation of random polycrystal microstructures. Given a set of microstructure snapshots that satisfy certain statistical constraints such as given low-order moments of the grain size distribution, using a non-linear manifold learning approach, we identify the intrinsic low-dimensionality of the microstructure manifold. In addition to grain size, a linear dimensionality reduction technique (Karhunun-Loéve Expansion) is used to reduce the texture representation. The space of viable microstructures is mapped to a low-dimensional region thus facilitating the analysis and design of polycrystal microstructures. This methodology allows us to sample microstructure features in the reduced-order space thus making it a highly efficient, low-dimensional surrogate for representing microstructures (grain size and texture). We demonstrate the model reduction approach by computing the variability of homogenized thermal properties using sparse grid collocation in the reduced-order space that describes the grain size and orientation variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.