Abstract

Engineered timber is an innovative and sustainable construction material, but its uptake has been hindered by concerns about its performance in fire. Current building regulations measure the fire performance of timber using fire resistance tests. In these tests, the charring rate is measured under a series of heat exposures (design fires) and from this the structural performance is deduced. Charring rates are currently only properly understood for the heat exposure of a standard fire, not for other exposures, which restricts the use of performance-based design. This paper studies the charring rates under a range of design fires. We used a multiscale charring model at the microscale (mg-samples), mesoscale (g-samples), and macroscale (kg-samples) for several wood species exposed to different heating regimes and boundary conditions. At the macroscale, the model blindly predicts in-depth temperatures and char depths during standard and parametric fires with an error between 5% and 22%. Comparing simulations of charring under travelling fires, parametric fires, and the standard fire revealed two findings. Firstly, their charring rates significantly differ, with maximum char depths of 42 mm (travelling), 46 mm (parametric), and 59 mm (standard fire), and one (standard fire) to four (travelling fire) charring stages (no charring, slow growth, fast growth, steady-state). Secondly, we observed zero-strength layers (depth between the 200 °C and 300 °C isotherm) of 7 to 12 mm from the exposed surface in travelling fires compared to 5 to 11 mm in parametric fires, and 7 mm in the standard fire. Both traditional design fires and travelling fires, therefore, need to be considered in structural calculations. These results help engineers to move towards performance-based design by allowing the calculation of charring rates for a wide range of design fires. In turn, this will help engineers to build more sustainable and safe structures with timber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.