Abstract

The flexural response of symmetric cross-ply laminated plates subjected to uniformly distributed linear and non-linear thermo-mechanical loads is presented using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The theory satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Thermal stresses and displacements for three-layer symmetric square cross-ply laminated plates subjected to uniform linear and nonlinear and thermo-mechanical loads are obtained. The results of present theory are compared with those of classical plate theory, first-order shear deformation theory and higher-order shear deformation theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call