Abstract

We investigate the thermal response of the atmosphere of a solar-type star to an electron beam injected from a hot Jupiter by performing a 1-dimensional magnetohydrodynamic numerical experiment with non-linear wave dissipation, radiative cooling, and thermal conduction. In our experiment, the stellar atmosphere is non-rotating and is modelled as a 1-D open flux tube expanding super-radially from the stellar photosphere to the planet. An electron beam is assumed to be generated from the reconnection site of the planet's magnetosphere. The effects of the electron beam are then implemented in our simulation as dissipation of the beam momentum and energy at the base of the corona where the Coulomb collisions become effective. When the sufficient energy is supplied by the electron beam, a warm region forms in the chromosphere. This warm region greatly enhances the radiative fluxes corresponding to the temperature of the chromosphere and transition region. The warm region can also intermittently contribute to the radiative flux associated with the coronal temperature due to the thermal instability. However, owing to the small area of the heating spot, the total luminosity of the beam-induced chromospheric radiation is several orders of magnitude smaller than the observed Ca II emissions from HD 179949.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.