Abstract

A fully coupled multiphysics model involving heat transfer and groundwater flow within a standing column well and its surrounding ground was modeled by means of a thermal resistance and capacity network coupled to an analytical solution. The transient groundwater velocity field and aquifer drawdown are addressed by applying a temporal superposition technique to the so-called Theis analytical equation. The heat pumps are integrated into the model, thereby allowing the effect of its entering water temperature on its capacity and coefficient of performance to be accounted for. To increase the flexibility of the approach, a three-level bleed control and an on-off sequence is included in the model, in order to allow the simulation of the dynamics of a system operation. The results show that the model developed in this paper is consistent with numerical reference solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.