Abstract

This study carries out the transient thermal residual stress analyses of functionally graded clamped plates for different in-plane material compositions and in-plane heat fluxes. The heat conduction and Navier equations representing the two-dimensional thermoelastic problem were discretized using the finite-difference method, and the set of linear equations were solved using the pseudo singular value method. Both in-plane temperature distributions and the heat transfer period were affected considerably by the compositional gradient. The type of in-plane heat flux had a minor effect on the temperature profile, but on the heat transfer period. The high stress levels appeared in the ceramic-rich regions. The normal and equivalent stresses exhibited a sharp change in the plates with ceramic-rich as well as metal-rich compositions, and the concentrated on a narrow ceramic layer. A smooth stress variation was achieved through the graded region with a balanced composition of ceramic and metal-phases, and the stress discontinuities disappeared. The in-plane shear stress was negligible. The equivalent stress exhibited a linear temporal variation for both constant and sinusoidal heat fluxes, but a nonlinear variation for the exponential heat flux. In case the heat flux is applied along the metal edge (metal-to-ceramic plate) instead of the ceramic edge, the displacement and stress components exhibited similar distributions to those of a ceramic-to-metal plate but in the opposite direction. As a result, the distribution of in-plane material composition affects only normal stress distributions, whereas the peak stress levels occur in the ceramic-rich regions. Since the normal stresses concentrate along a narrow ceramic layer for ceramic-rich or metal-rich compositions, a balanced in-plane material composition distribution of ceramic and metal would be useful to avoid probable local ceramic fracture or damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call