Abstract

Many recent studies have applied satellite remote sensing data to large-scale hydrologic and biospheric modeling. It is widely accepted that the thermal infrared observations from the Advanced Very High Resolution Radiometer (AVHRR) have the potential to estimate land surface conditions, such as surface temperature, near surface air temperature, and near surface water vapor. In this study, algorithms to estimate all three variables are presented and applied to an area covering the state of Oklahoma for a six day period in August, 1994. The results were validated using ground observations from the 111 station Oklahoma Mesonet. Validation of the remote sensing algorithms with Mesonet observations produced comparable results to previous validation studies. In addition, the validation process revealed inadequacies in thermal modeling that had not been detected in previous validation studies leading to the development of a new approach to estimate atmospheric water vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.