Abstract

We found a solution of an unsteady two-dimensional heat conduction equation in a functionally gradient material (FGM) which is subjected to a double thermal shock, namely, a local heating of a specimen by a power laser beam and cooling of a heated surface by a water-air spray. We developed an analytical method whereby a coating is described as a laminated plate composed of n layers with the constant material properties within a layer. Temperature distribution in a nonhomogeneous laminated plate is obtained in a form of series using the Laplace–Hankel integral transforms. In order to extend the model of a laminated plate to describe FGM where thermal physical characteristics are continuous functions of spatial coordinate, we considered the limiting case of the obtained temperature distribution when the thickness of the layer iΔ i → 0, and the number of layers n→∞. This allowed us to obtain the temperature distribution in an easy-to-use analytical form which can be used for determining thermal stresses in FGM. The dependence of the temperature distribution in FGM on the operating parameters of a double thermal shock method, e.g., a duration of heating, laser beam radius, the rate of a spray cooling, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.