Abstract
Fine-Pitch BGAs and underfills have been used in benign office environments and wireless applications for a number of years, however their reliability in harsh environments is not well understood. In this work, the design guidelines development effort for deployment of fine-pitch ball-grid array packages in the harsh environments have been presented. Guidelines are targeted towards government contractors, OEMs, and 3rd party contract manufacturers who intend to select part architectures and board designs based on specified mission requirements. The guidelines are intended as an aid for understanding the sensitivity of component reliability to geometry, package architecture, material properties and board attributes in different thermal environments in order to quantitatively evaluate the impact of these parameters on the component reliability. The intent is to develop a tool for doing trade-offs between geometry, materials and quantitatively evaluating the impact on reliability. Sensitivity relations for geometry, materials, and architectures based on statistical models and failure mechanics based closed form models have been developed. Convergence between statistical model sensitivities and failure mechanics based sensitivities has been demonstrated. Predictions of sensitivities have been validated against experimental test data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.