Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino experiment designed to determine neutrino mass hierarchy, precisely measure oscillation parameters and study solar neutrinos, supernova neutrinos and geo-neutrinos, etc. The central detector (CD) of JUNO has 20,000 tons liquid scintillator as target mass, which contains inside a huge acrylic sphere with inner diameter of 35.4 m, supported by a stainless steel structure. The whole structure of CD will be installed inside a cylindrical water pool, and the acrylic sphere will be submerged in the center of water pool. The operating temperature of CD is designed to be 21 °C as long as over 20 years, which is determined by the mechanical requirement of the structure and physics consideration. For this operating temperature, a special cooling system will be used to maintain the temperature inside the water pool. The main structure of CD is composed of acrylic and stainless steel, and they have much different thermal expansion coefficients, strengths and life times. Change in temperature may affect the safety of CD. As part of reliability analysis, the effect of cooling system failure on the CD is considered, and finite element method is used in our thermal calculation. In this article, the temperature fields before and after cooling system failure are calculated and analyzed, and the temperatures of different locations of water pool after cooling system failure are compared and discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call