Abstract

Rayleigh waves in a half-space exhibiting generalized thermoelastic properties based on Green-Lindsay (G-L), Lord-Shulman (L-S), and classical dynamical coupled (C-D) theories are discussed. The phase velocity of Rayleigh waves in the previous three different theories has been obtained. A comparison is carried out between the phase velocities of Rayleigh waves, displacements, stresses, and temperature as calculated from the different theories of generalized thermoelasticity. The C-D theory is recovered as a special case. It appears, in particular, that the results obtained from G-L theory tend to those of L-S theory as the values of the two relaxation times become closer to each other. The second relaxation time is well pronounced when it becomes larger than the first one. Furthermore, it is found that the thermal relaxation times decrease the speed of the elastic waves and modify the phase velocities of the Rayleigh waves. The results obtained and the conclusions drawn are discussed numerically and illustrated graphically. Relevant results of previous investigations are deduced as special cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call