Abstract
We tested whether the reduction of metabolic rate (MR) in hibernating Cercartetus nanus (Marsupialia, 36 g) is better explained by the reduction of body temperature (Tb), the differential (delta T) between Tb and air temperature (Ta), or thermal conductance (C). Above the critical Ta during torpor (Ttc) of 4.8 +/- 0.7 degrees C where the Tb was not regulated, the steady-state MR was an exponential function of Tb (r2 = 0.92), and the overall Q10 was 3.3. However, larger Q10 values were observed at high Tb values during torpor, particularly within the thermoneutral zone (Q10 = 9.5), whereas low Q10 values were observed below Tb 20 degrees C (Q10 = 1.9). The delta T did not change over Ta 5-20 degrees C, although MR fell, and therefore the two variables were not correlated. Below the Ttc, Tb was regulated at 6.1 +/- 1.0 degrees C and MR increased proportionally to delta T. Our study suggests that MR in torpid C. nanus is largely determined by temperature effects and metabolic inhibition. In contrast, delta T explains MR only below the Ttc and C appears to affect MR only indirectly via changes of Tb, suggesting that delta T and C play only a secondary role in MR reduction during hibernation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.