Abstract
This study analyzed the effects of a wide embankment on the thermal regime of permafrost and evaluated the feasibility of different measures to protect the permafrost underlying the wide embankment. Based on a specific embankment section of the Qinghai-Tibet highway and field observed data, a finite-element model was built and verified to conduct thermal analysis. Based on numerical analysis, the temperature fields and thawing depths of embankments with different widths were analyzed. The influences of different protective measures on the thermal stability of embankments were evaluated. The findings indicate that, after embankment construction, the annual ground temperature and maximum thawing depth increase with time. Thus, the embankment construction causes serious disturbance of the thermal stability of permafrost. An embankment with a larger width has a lower thermal stability. The results also show that raising the embankment height, setting a crushed stone layer, or setting an expanded polystyrene (EPS) layer can improve the thermal stability of an embankment. However, the improving effect of a single protective measure is not obvious for wide embankments with widths larger than 26 m. A combination of a crushed stone layer and an EPS layer provides the best protective effect on the thermal stability of a wide embankment. Thus, it is recommended as a protective measure for wide embankments of expressways in permafrost regions of the Qinghai-Tibet Plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.