Abstract

ABSTRACTThe rectification of heat in graphene nanoribbons (GNRs) of asymmetric geometries is investigated by means of nonequilibrium molecular dynamics (NEMD). Two kinds of geometries of GNRs are addressed; a trapezoidal or T-shaped step is inserted halfway through a GNR in its longitudinal direction. The thermal conductivities (TCs) of the GNRs in the two longitudinal directions, forward and backward, are calculated making their width and temperature change. It is revealed that the thermal rectification ratio (TRR) of T-shaped GNRs are larger than those of trapezoidal GNRs and that the characteristics of heat transport in such asymmetric GNRs can be understood by considering the local phonon density of states (DOSs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.