Abstract

The current study estimates the radiation flux emitted from hot extended gas clouds characteristic of vapour cloud explosions along with the corresponding level of irradiance posed on particles suspended in the unburnt part of the cloud ahead of an advancing flame front. The data presented permits an assessment of the plausibility of combustion initiation by such particles due to forward thermal radiation. The thermal radiation will depend on the emissivity of the burned volume, which relates to the concentration of gaseous and particulate combustion products. A sensitivity analysis has been carried out to account for variations in the equivalence ratio, mixture pressure and radiative heat losses. The spatial distribution of irradiance ahead of the flame front has been computed by introducing appropriate geometrical factors to explore the impact of cloud size. Using fuel rich ethylene-air mixtures it has been shown that high flame emissivities can be achieved at path lengths of order 1m even in the presence of very low soot volume fractions. The emissivity of gas-soot mixtures will hence be mainly determined by the soot concentration and to a lesser extent by the mixture temperature. Our analysis suggests that the role of forward thermal radiation as a contributing factor to flame propagation in large scale vapour cloud explosions can not currently be ruled out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call