Abstract

This work is focused on the steady-state, hydromagnetic forced convective boundary-layer flow of an incompressible Newtonian, electrically-conducting and heat-generating/absorbing fluid over a non-isothermal wedge in the presence of thermal radiation effects. The wedge surface is assumed permeable so as to allow for possible wall suction or injection. Also included in the model are the effects of viscous dissipation, Joule heating and stress work. The governing partial differential equations for this investigation are derived and transformed using a non-similarity transformation. In deriving the governing equations, a temperature-dependent heat source or sink term is employed and the Rossland approximation for the thermal radiation term is assumed to be valid. The obtained non-similar equations are solved numerically by an implicit, iterative, tri-diagonal finite-difference method. Comparisons with previously published work on various special cases of the problem are performed and the results are found to be in excellent agreement. Numerical results for the velocity and temperature profiles for a prescribed magnetic parameter as well as the development of the local skin-friction coefficient and local Nusselt number with the magnetic parameter are presented graphically and discussed. This is done in order to elucidate the influence of the various parameters involved in the problem on the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.